
Am. J. Hum. Genet. 65:885–901, 1999

885

Blocking Gibbs Sampling for Linkage Analysis in Large Pedigrees with
Many Loops
Claus Skaanning Jensen1 and Augustine Kong2

1Department of Mathematics and Computer Science, Institute for Electronic Systems, Aalborg University, Aalborg, Denmark; and 2Department
of Statistics, University of Chicago, Chicago

Summary

We apply the method of “blocking Gibbs” sampling to
a problem of great importance and complexity—linkage
analysis. Blocking Gibbs sampling combines exact local
computations with Gibbs sampling, in a way that com-
plements the strengths of both. The method is able to
handle problems with very high complexity, such as link-
age analysis in large pedigrees with many loops, a task
that no other known method is able to handle. New
developments of the method are outlined, and it is ap-
plied to a highly complex linkage problem in a human
pedigree.

Introduction

For linkage analysis—the problem of the estimation of
the relative positions of the genes on the chromo-
somes—many methods have been developed during re-
cent years. Fast and exact methods for computation in
Bayesian networks (e.g., pedigrees) (Cannings et al.
1976; Pearl 1986; Lauritzen and Spiegelhalter 1988;
Shenoy and Shafer 1990; Lauritzen 1992) handle only
small problems, since the computation is “NP-hard” (the
complexity is exponential; i.e., there are no practical
algorithms that will always solve the problem in poly-
nomial time). Markov chain Monte Carlo (MCMC)
methods (Gelfand and Smith 1990; Gelman and Rubin
1992; Geyer 1992; Thomas et al. 1992; Smith and Rob-
erts 1993) have provided a good alternative, since they
are able to handle very difficult problems. In these meth-
ods, computation time often exceeds any acceptable
level, when one is considering very large networks (e.g.,

Received January 14, 1997; accepted for publication June 2, 1999;
electronically published July 29, 1999.

Address for correspondence and reprints: Dr. Claus Skaanning Jen-
sen, Aalborg University, Institute for Electronic Systems, Department
of Mathematics and Computer Science, Fredrik Bajers Vej 7E–DK
9220 Aalborg, 0–Denmark. E-mail: claus@cs.auc.dk

� 1999 by The American Society of Human Genetics. All rights reserved.
0002-9297/1999/6503-0033$02.00

pedigrees of thousands of individuals), and it is often
difficult to decide whether the desired precision has been
reached. What may be even worse is that, in the general
case, it is impossible to guarantee irreducibility, and thus,
in many cases, it can never be known whether conver-
gence has been reached.

Linkage analysis represents a problem of high com-
plexity that has been particularly hard to handle. Ex-
isting methods such as those implemented in the LINK-
AGE (Lathrop and Lalouel 1984; Lathrop et al. 1985)
and FASTLINK software packages (Cottingham et al.
1993; Schäffer et al. 1994) are unable to handle pedi-
grees with even a moderately low number of loops (i.e.,
≈10), since the computation time increases exponentially
with the number of loops. Sequential imputation (Kong
et al. 1993; Irwin et al. 1994), which essentially is also
a blocking scheme, handles multiple loci very well, but
only when there are no or very few loops. Simulated
tempering/annealing MCMC (Geyer and Thompson
1993) is a promising approach that handles these cases,
although it seems to require a difficult choice of initial
parameters and may suffer from problems of low ac-
ceptance rates.

Blocking Gibbs sampling allows general inference in
very large complex Bayesian networks and is a partic-
ularly promising method for linkage analysis as well as
for many other problems requiring inference in large
Bayesian networks. The method combines exact local
computations and Gibbs sampling (Geman and Geman
1984), such that, instead of sampling a single variable
at a time (“single-site Gibbs sampling”), a very large
proportion of the variables (usually 190%) are sampled
jointly by exact local computations. Joint sampling of
many variables (i.e., block updating) hinges on the fact
that conditioning on certain variables breaks loops in
the network, creating a network with fewer loops. This
network, if enough loops are broken, then becomes fea-
sible for exact computation, allowing us to sample the
variables of the network jointly. Since blocking Gibbs
sampling operates on general Bayesian networks in
which the general unit of information is a variable, this
notation will be used throughout the present article. A

886 Am. J. Hum. Genet. 65:885–901, 1999

Figure 1 LQT pedigree. Marker genotypes are in parentheses. Gray-shaded diamonds denote affected sibs. Some diamonds represent
several individuals; for example, diamond 29–38 represents the 10 individuals 29–38, 4 of whom have genotype (1,3), 3 of whom have genotype
(1,4), and 3 of whom have genotype (3,4).

variable thus can represent any chosen unit of infor-
mation, such as a genotype, an allele, a phenotype, etc.

Jensen et al. (1995) compared blocking Gibbs sam-
pling with single-site Gibbs sampling. They applied both
methods to three pedigrees, consisting of 455, 704, and
1,894 individuals. It was shown that, in all cases, block-
ing Gibbs sampling performs better than does single-site
Gibbs sampling. In general, blocking Gibbs sampling
mixes fast, whereas single-site Gibbs sampling often
mixes very slowly or even gets completely stuck. The
example pedigrees used by Jensen et al. (1995) were
small (blocking Gibbs sampling can handle much larger
pedigrees) but highly inbred, with hundreds if not
thousands of loops. No other known method can handle
pedigrees this large—except for simulated tempering, if
suitable starting parameters can be found.

In the present article, we apply blocking Gibbs sam-
pling to a 73-individual linkage problem (see fig. 1)
(Kong 1991) concerning a rare heart disease called the
“long QT syndrome” (LQT). We perform a two-point
linkage analysis of this pedigree and analyze the behav-
ior and performance of blocking Gibbs sampling. This
example contains many loops; however, it is still possible
to use exact computation on it, which provides us with
the correct result. Although exact computation is pos-

sible, this example is just within the limits of what is
currently possible to do with exact methods. Still, the
blocking Gibbs method is able to handle much larger
examples.

In the next section we describe the blocking Gibbs
method. Then the method is applied to the LQT pedi-
gree, and a discussion follows. A more detailed descrip-
tion of the blocking Gibbs method can be found in the
work of Jensen (1997).

Blocking Gibbs Sampling

Although blocking Gibbs sampling is an MCMC
method, it employs an exact inference method, which
we describe in the following.

Exact Belief Updating

It has been shown (Shachter et al. 1991) that all exact
methods for belief updating in Bayesian networks can
be viewed as variations on a single, general algorithm
involving clustering of variables in a structure called a
“junction tree” (Jensen et al. 1990). (For a definition of
Bayesian networks, see the work of Pearl [1991].) In this
category also falls “peeling” (Elston and Stewart 1971;

Jensen and Kong: Blocking Gibbs Sampling for Linkage Analysis 887

Figure 2 Transformation of a Bayesian network into a junction
tree. In panel D, ovals represent cliques, and boxes represent
separators.

Lange and Elston 1975; Cannings et al. 1978), which is
an exact method developed for belief updating in a par-
ticular type of Bayesian networks—namely, pedigrees.
Peeling can not be used for the blocking Gibbs algo-
rithm, for two reasons: (i) it returns only the marginal
probabilities of a single variable (or cluster of variables)
and has to be run once for each variable (or cluster),
thereby causing extreme inefficiency for this application,
and (ii) it is not able to perform exact sampling of all
variables, something that is crucial in a Gibbs sampler
with block updating.

Thus, even though the use of peeling in the algorithm
would make it more easily accessible to researchers in
genetics, we must use the more general updating method
provided by the junction-tree method, for the reasons
noted above. The junction tree is obtained from the Bay-
esian network in the following way (see the example in
fig. 2; as mentioned above, the variables given in figure
2 do not necessarily represent pedigree individuals but,
rather, are data pertaining to an individual—for exam-
ple, the paternal gene, the phenotype, etc.).

1. In figure 2A, we have the Bayesian network, a di-
rected acyclic graph with a conditional distribution as-
sociated with each variable. Obviously, a pedigree can
easily be represented as a Bayesian network.

2. The “moral graph” (fig. 2B) is obtained by addition
of undirected edges between all pairs of disconnected

variables with common children and by replacement of
directed edges by undirected ones.

3. The “triangulated graph” (fig. 2C) is obtained by
addition of edges to the moral graph, such that there
are no cycles of length 13 that do not have a chord.
These edges are denoted “fill-in links.”

4. Finally, the “junction tree” (fig. 2D) is constructed
by connecting the “cliques” C (maximal sets of pairwise
connected variables) of the triangulated graph. The
cliques are separated by the so-called separators, S. The
junction tree has the property that the intersection

of any two cliques is a subset of all cliques onC ∩ C1 2

the path between C1 and C2 in the tree. (This is called
“the junction-tree property.”) The cliques of the junction
tree essentially correspond to the cut sets of peeling.

The storage requirements of a junction tree can beJT
expressed as the sum of the storage requirements of the
cliques C and the separators S: ,c(JT) = S c(A)A�C∪ S

where c denotes complexity. If Sp(v) denotes the state
space of variable v, then the storage requirements of

are given as . In the currentA � C ∪ S c(A) = P FSp(v)F�Av

implementation of blocking Gibbs sampling, we have
used an object-oriented version of the exact method of
Lauritzen and Spiegelhalter (1988), which has been de-
scribed by Jensen et al. (1990) and implemented in the
expert-system shell HUGIN (Andersen et al. 1989). In
this scheme, belief updating is implemented through
message passing in a junction tree.

The message passing scheme is well described in the
work of Jensen (1996b). Before message passing can be
performed, the cliques and separators of the junction
tree must be initialized as follows:

1. Initially all cliques and separators are given a prob-
ability table of all 1’s.

2. Each variable v in the junction tree is assignedJT
to a clique C that contains v and its parents, . Be-pa(v)
cause of the moralization of the Bayesian network, such
a clique always exists. The probability table for v,
P(vFpa[v]), is multiplied by C’s probability table.

We can now insert observations—for example, that v
is in state 1—into the junction tree, by finding a clique
C containing v and then multiplying table fv by C’s prob-
ability table. fv is a table for Sp(v) and has a 1 in the
observed state and 0’s in the other states.

The effect of observations on variables in the junction
tree can now be propagated to other variables by mes-
sage passing. Message passing is based on the “absorp-
tion” operator, which propagates information from a
clique C1 to one of its neighbors C2 with separator S. It
consists of the following steps, in which , , and tSt tC C1 2

are the original probability tables:

888 Am. J. Hum. Genet. 65:885–901, 1999

Figure 3 Example of message passing for a small junction tree

1. We calculate —that is, the information∗t = S \ tS C S C1 1

in the table for C1 that concerns S;
2. then we assign to S the new table ;∗tS

3. and, finally, we assign to C2 the new probability
table .∗ ∗t = t (t /t)C C S S2 2

We then say that C2 has “absorbed” from C1.
The message-passing scheme performs a series of ab-

sorptions in the junction tree, which passes information
to all parts of the tree. Basically, a message is sent from
C1 to C2 when C2 absorbs from C1. In the message-
passing scheme, a clique C1 can send exactly one message
to each neighbor C2, and it may be sent only when C1

has received a message from all other neighbors.
An example of message passing is shown in figure 3.

First, the leaf cliques with only one neighbor—that is,
C1, C3, C4, and C6—can send a message to their neighbor.
Then, C2 can send a message to C5, and C5 can send a
message to C2. Then, finally C2 can send messages to C1

and C3, and C5 can send messages to C4 and C6.
It has been shown (e.g., see Jensen 1996b) that, when

message passing has concluded, the junction tree is con-
sistent, which means that all cliques containing v hold
the same information about v. Furthermore, the mar-
ginal probabilities of each variable v, given the obser-
vations, can now be obtained by marginalization of an
arbitrary clique containing v.

Thus, the benefit of the junction-tree method is that
it organizes the variables in optimal clusters such that
only the minimal number of variables have to be con-
sidered jointly. This is done by exploitation of the in-
dependencies between variables.

The junction-tree structure can be used as the basis
for other kinds of computations—for example, a ran-
dom joint sample of the unobserved variables, given ob-

served variables (Dawid 1992). This is what is used for
the sampling of large sets of variables jointly in blocking
Gibbs sampling, and, as can be seen from the discussion
above, it requires that exact computations can be per-
formed on that pedigree part that contains these
variables.

The random joint sample is basically obtained by
modification of the absorption step in the message-
passing scheme. Now, a random configuration has been
selected for C1 and has been entered as an observation
such that the probability table of C1 contains a single
1 at this configuration and contains 0’s at all other
places. Since S is contained within C1, a random con-
figuration for S is implicit in the table of C1. The table
for S containing a 1 at this configuration is multiplied
by the table for C2, and the resulting table for C2 is
used to draw a random joint sample for the remaining
variables in C2 that have not yet been fixed. When this
modified absorption operator is used in the message-
passing scheme, a joint sample is obtained for all var-
iables in the junction tree. In the case of blocking Gibbs
sampling, many variables in the junction tree will have
fixed values, and the remaining variables will be sam-
pled, given these—something that is possible in the
method of Dawid (1992).

For further (and much more detailed) information on
junction-tree algorithms, consult the work of Jensen
(1996b).

Gibbs Sampling

As has been mentioned, exact methods such as those
discussed above cannot be used for large problems with
many loops. In these situations, MCMC methods can
often be used.

A popular MCMC method is Gibbs sampling. The
general Gibbs sampling method can be explained as fol-
lows: Given a Bayesian network with variables V, we
can construct sets (“blocks”) B1,),Bn, such that B Pi

, , , and B1,),Bn are not)V i = 1,) ,n B ∪ ∪ B = V1 n

necessarily disjoint. We then define ,A = V ' B i =i i

(i.e., Ai is the set obtained from V after exclusion1,) ,n
of Bi). The Gibbs sampler then proceeds as follows:

0: Find the starting configuration of A1, which is
called “ .”(1)A1

1: Simulate the variables in B1 conditional on .(1)A1

This yields . Now, all variables are realized, and the(1)B1

configuration is found directly from this realization.(1)A2

2: B2 is simulated conditional on , yielding .(1) (1)A B2 2

is extracted from the configuration .(1) (1) (1)A (A ,B)3 2 2

_
n � 1: is simulated conditional on , yield-(1)B An�1 n�1

ing . is extracted from the configuration(1) (1)B An�1 n

.(1) (1)(A ,B)n�1 n�1

Jensen and Kong: Blocking Gibbs Sampling for Linkage Analysis 889

Figure 4 A and B and their offspring C. The notation is as
follows: A has genes Af and Am, where Af is the gene originating from
the father of A and Am is the one originating from the mother of A.

Figure 5 Representation of the two-locus linkage problem. As
in figure 4, Af represents the gene that individual A inherited from the
father. The subscripts denote the locus of the gene; that is, “a” denotes
the marker, and “d” denotes the disease. There are thus four gene
variables for each individual. For each individual there are four in-
dicator variables: , , , and . Only the indicator variablesA A B BZ Z Z ZC,a C,d C,a C,d

of C are shown.

n: Bn is simulated conditional on , yielding .(1) (1)A Bn n

is extracted from the configuration .(2) (1) (1)A (A ,B)1 n n

Steps 1,),n are repeated until a sufficient number of
samples— —(1) (1) (2) (2) (m) (m)(B ,) ,B),(B ,) ,B),) ,(B ,) ,B)1 n 1 n 1 n

have been produced. These samples are then used to
estimate the stationary distribution of the Markov chain
induced by the Gibbs sampler.

In the scheme given above, it can be seen that a var-
iable can be sampled multiple times in each iteration,
since the blocks do not have to be disjoint.

The variant of Gibbs sampling that is usually
seen—that is, “single-site Gibbs sampling—samples only
one variable at a time, rather than a set of variables.
The single-site Gibbs sampler is very easily implemented
but may have severe problems. If the problem at hand
is large and contains many loops, mixing may be too
slow for practical purposes, or, because of multimodality
(i.e., the division of the configuration space into multiple
almost disconnected subspaces), the sampler can get
stuck in a subspace. These are problems particularly ap-
parent in linkage analysis in which networks often are
huge with large numbers of loops. Blocking Gibbs sam-
pling usually avoids these problems by sampling the ma-
jority of variables jointly.

The Blocking Gibbs Sampling Scheme

Blocking Gibbs sampling is an attempt at implemen-
tation of the general Gibbs sampling scheme in which
many variables are sampled jointly. As mentioned above,
the blocks do not have to be disjoint, but their union

should contain all variables. We have various criteria
that we want the blocks to fulfill:

1. The blocks should contain as many variables as
possible. Their size is governed by memory capacity. The
larger the blocks, the faster the blocking Gibbs sampling
will converge. In the limit for which the entire network
is included within one block, we get exact simulation.
In the opposite limit, in which only one variable is in-
cluded in each block, we will get single-site Gibbs
sampling.

2. All variables should be sampled approximately
equally often.

3. The blocking Gibbs sampler should be irreducible.

Criterion 1.—To construct a block that contains as
many variables as possible, we use the fact that condi-
tioning on certain variables breaks loops in the network,
creating a network with fewer loops. This network,
given that enough variables are being conditioned on
(and, thus, that enough loops are broken), then becomes
feasible for exact computation, allowing us to sample
the variables of the block jointly. The variables that are
removed from the block in order to reduce the memory
requirements will be termed the “optimal variables.”

We construct a block B by selecting a set of variables
A that should not be part of the block. When sampling
B, we condition on the variables in A, breaking a suf-
ficient number of loops. The variables in B are now
sampled jointly by the “random propagation” method
described by Dawid (1992). When loops are broken, the
storage requirements of the junction tree are reduced.

We want B to contain as many variables as possible.

890 Am. J. Hum. Genet. 65:885–901, 1999

Figure 6 Examples of removal of a variable from a junction
tree. Panel A shows the starting configuration. In panel B, “a” is
removed; in panels C–E, “b” is removed; in panels F and G, “f” is
removed.

This can be achieved by making A as small as possible,
by selecting the variables for A that reduce the storage
requirements of the junction tree the most. These vari-
ables are usually contained in many cliques in the junc-
tion tree, and they have many links in the Bayesian
network.

In a pedigree setting, these variables would correspond
to individuals who are involved in many loops. The var-
iables in the blocking Gibbs sampler do not necessarily
correspond with individuals, however. Depending on the
type of pedigree analysis, each individual can correspond
to one or more variables in the network. This will be
further detailed in the Description of the Created Blocks
section, below. In figure 4 we see an example in which
an individual is represented by two variables, and in
figure 5 we see an example in which individual C is
represented by eight variables.

This situation also can be described by means of
pseudo code. In the following program, S is the amount
of storage (RAM, disk, etc.) available on the computer.

find optimal variables : {v ,v ,v ,v ,)}1 2 3 4

JT R initial junction tree1

i R 1

while storagereq(JT) 1 S do :i

JT R JT with v removedi�1 i i

i R i � 1

end while.

The optimal variable is found by computation, for each
variable v, of the reduction of storage requirements that
is caused by the removal of v from the junction tree.

The algorithm is iterative, such that, when an optimal
variable has been found and removed from the junction
tree, the reduced junction tree is used as basis for finding
the next optimal variable. Thus, the pseudo code given
above finds a conditionally ordered list of the variables.

Since the optimal variables are the variables that most
reduce the sizes of the cliques in the junction tree, these
variables will also, in general, be the variables that are
located in the most cliques. Again, since cliques corre-
spond to cut sets in the peeling algorithm, the optimal
variables will correspond to variables that are located
in many cut sets in the peeling.

The removal of a variable from the junction tree ne-
cessitates multiple changes in the junction-tree structure,
to ensure that the junction-tree property remains valid.
Here is a small piece of pseudo code illustrating the
changes when the variable v is removed from a junction
tree, JT:

delete v from all cliques and separators

for each clique C in C do :i

for each neighboring clique C of C do :j i

if C is a proper subset of C do :j i

delete C , delete the separator connectingj

C and C , and reconnect all separatorsj i

connected to C to Cj i

end if.

end for.

end for.

remove redundant fill-in links.

In this algorithm, the first 10 statements perform re-
ductions in the junction tree that are made possible by
the removal of v. When v is removed, it is possible that
some cliques become subsets of others, and, since it is
only necessary to have each clique represented once in

Jensen and Kong: Blocking Gibbs Sampling for Linkage Analysis 891

the junction tree, these cliques that are subsets of others
can be removed.

The last statement searches through the junction tree,
for fill-in links that are rendered redundant by the prior
reductions. If a variable is removed in a Bayesian net-
work—for example, b in figure 2A—it is possible that
fill-in links added during the triangulation become re-
dundant. One fill-in link, e–f, is present in this situation,
and, when b is removed, it becomes redundant. The
reason for this is that it is no longer required for tri-
angulation of the network, since there are no longer any
cycles of length 13 that do not have a chord. A redun-
dant fill-in link is characterized by being present in only
one clique (Kjærulff 1993). Thus, the junction tree can
quickly be searched for these links, and, once one has
been removed, the next one can be found, until there
are no more. The removal of the link in the Bayesian
network is performed, in the corresponding junction
tree, by splitting the single clique containing the variables
of the link into two cliques, each of which contains only
one of the two variables. These cliques may now be
subcliques of other cliques and thus be subject to re-
moval, etc.

The algorithm describes only the construction of a
single block, constructed by removal of variable after
variable until the junction tree representing the block
can be stored within a reasonable space. To run the
blocking Gibbs sampler, it would be necessary to run
the algorithm several times, to construct a number of
blocks. These blocks may be overlapping, but their un-
ion must contain all variables such that they are all sam-
pled at least once in each iteration. How to do this is
described the Criterion 2 subsection, below.

The algorithm can be illustrated with a few examples,
as shown, for example, in figure 6 (again, it should be
noted that the variables in figure 6 do not necessarily
correspond to pedigree individuals).

Example A: In figure 6A, we see the initial junction
tree also shown in figure 2.

Example B: In figure 6B, variable a has been removed.
The removal of a causes clique 1 to become a proper
subset of clique 3. Thus, clique 1 and separator 2 can
be deleted.

Example C: In figure 6C, variable b has been removed.
We see that clique 3 becomes a proper subset of clique
9. Thus, clique 3 and separator 6 can be removed. Sep-
arators 2 and 4 that were connected to clique 3 have
now been connected to clique 9. This is shown in figure
6D.

Example E: The junction tree in figure 6D can be
further reduced when we take into account that the fill-
in link e–f is now redundant, since the variables e and
f are present in only one clique, {e,f,g}. Thus, according
to the last line of the block-construction algorithm, this

clique can be split in two such that each of the variables
occurs in one of the two new cliques. In this case, the
two new cliques, {e,g} and {f,g} are both subsets of other
cliques and can be removed. The resulting reduced junc-
tion tree is shown in figure 6E.

Example F: In figure 6F, variable f has been removed.
This causes both clique 3 to become a proper subset of
clique 1 and clique 9 to become a proper subset of clique
7. In figure 6G, first, clique 3 and separator 2 have been
deleted, and separators 4 and 6 are connected to clique
1. Then, clique 9 and separator 8 are deleted, and sep-
arators 6 and 10 are connected to clique 7.

Thus, in figure 6, three blocks are constructed. These
blocks are not optimal but are merely chosen to illustrate
how blocks can be created from the initial junction tree.
If three optimal variables were to be chosen in this junc-
tion tree, they would be chosen among b, e, f, and g.

With the blocks found in figure 6, a blocking scheme
could be performed. One iteration in this scheme would
consist of the following steps:

1. Update variables in example B, given the current
value of a. Thus, a new value for b is found in this step.

2. Update variables in example E, given the current
value of b. A new value for f is found in this step.

3. Update variables in example G, given the current
value of f. A new value for a is found in this step.

In each step, all variables except one are sampled
jointly, and their new values are registered for later es-
timation of marginal probabilities.

We have been using the method for selection of blocks
in many different networks, and empirical evidence sug-
gests that, in almost all cases, the blocks contain 190%
of the variables, allowing very fast mixing.

Criterion 2.—We want variables to be sampled ap-
proximately equally often, to ensure that we do not get
situations in which some variables are sampled many
times in each iteration whereas others are sampled only
once. However, criterion 1 urges us to remove the op-
timal (with regard to reduction of storage requirements)
variables from most of the blocks, and, as a result, these
variables are then sampled only one or a few times in
each iteration, whereas the majority of variables are in-
cluded in all blocks and thus are sampled much more
often. It seems that we must use the optimal variables
in order to reduce storage requirements, letting criterion
1 take priority over criterion 2.

To ensure that the blocks have approximately the
same size, we use a simple algorithm, here outlined with
a piece of pseudo code. We want to construct N blocks,
called “B1,”),”BN.” A counter, ci, is associated with
each variable, vi, and ci indicates how many times vi has
been removed from any block. We have tentatively de-
cided that all ci must not exceed (where  de-Ng =  2

892 Am. J. Hum. Genet. 65:885–901, 1999

Figure 7 Simple pedigree in which A and B have offspring C
and D. C has genotype (1,1), and D has genotype (2,3); thus, either
(i) A has genotype (1,2) and B has genotype (1,3) or (ii) A has genotype
(1,3) and B has genotype (1,2).

Figure 8 Offspring C with genotype (1,1), which requires that
B with phenotype p2 have either genotype (1,2) or genotype (2,1).

notes the integer part of the argument), thus forcing the
optimal variables to be sampled at least times inN 2

each iteration. Again, S is the amount of storage avail-
able to the computer. In the following, the terms “junc-
tion tree” and “block” are used interchangeably; a block
is created from the initial junction tree by removal of
variables—that is, the block is also a junction tree.

for i = 1 to N do :

B R initial junction treei

end for.

while storagereq(B) 1 S ∨) ∨ storagereq(B) 1 S do :1 N

for i = 1 to N do :

v R variable in B with highest reductionij

of storage requirements for which c ! gj

c R c � 1j j

remove v from Bij

end for.

end while.

Criterion 3.—Reducibility may often be a problem,
especially when single-site Gibbs sampling is used. Only
in simple cases, such as diallelic pedigree analysis, is
irreducibility almost always guaranteed (Sheehan and
Thomas 1993). However, for pedigree analysis with
more than two alleles, irreducibility will often depend
on the blocking of the variables. The simple pedigree-
analysis example shown in figure 7 is reducible by the
single-site Gibbs sampler, owing to the fact that it will
be unable to switch between the configurations (A =

and . Several similar exam-12,B = 13) (A = 13,B = 12)
ples and an extended investigation of the reducibility of
Gibbs sampling in pedigree analysis is provided in he
work of Jensen and Sheehan (1997). However, if block-
ing Gibbs sampling were applied and A and B were

sampled jointly, the problem would be irreducible. The
reducibility problem seen in figure 7 is very common in
pedigrees; however, it is not seen in figure 1.

In the present implementation of blocking Gibbs sam-
pling, the representation described by Kong (1991) has
been used. In this representation, each variable repre-
sents the inherited allele of a genotype (see fig. 4.

When this representation is used, reducibility can oc-
cur in a number of special cases. First, for example, if
A has been typed to genotype (1,2), then Af and Am must
be sampled jointly, to enable switching between config-
urations and .f m f m(A = 1,A = 2) (A = 2,A = 1)

Second, if the probabilities P(gFp) are defined such
that (a) one phenotype p1 can correspond to only one
homozygous genotype (1,1) and (b) another phenotype
p2 can correspond only to a set of genotypes different
from (1,1), then the pedigree shown in figure 8 will be
reducible by single-site Gibbs sampling.

Again, the solution to the problem in figure 8 is to
sample the variables Bf and Bm jointly, thereby allowing
switching between the configurations andf m(B = 1,B = 2)

. This problem appears in several individ-f m(B = 2,B = 1)
uals shown in figure 1; for example, individual 56, who
has the disease phenotype (1,1), forces unaffected in-
dividual 54 to have one of the noncommunicating
configurations— orf m(54 = 1,54 = 2)

—at the disease locus. (Even though wef m(54 = 2,54 = 1)
represent the possibility of both configurations of the
genotype (1,2), the locus is not fully penetrant. For link-
age analysis, it is necessary to know from which parent
an allele has been inherited, and, even though this in-
formation has not been given to begin with, it can be
obtained through sampling.)

In general, many other situations like that described
above may occur, and they are not always easily de-
tected. At this point, it is not clear whether a general
method for finding these blocks will ever be found. The
problem of finding the blocks corresponds to the very
hard problem of finding the noncommunicating classes
for MCMC methods, discussed by Lin et al. (1994).

Finding the starting configuration.—Finding the start-

Jensen and Kong: Blocking Gibbs Sampling for Linkage Analysis 893

ing configuration is often a problem with MCMC meth-
ods. With single-site Gibbs sampling, one must find a
starting configuration for the entire network (except one
variable); however, with blocking Gibbs sampling, one
must find a starting configuration for only the comple-
ment of the first block (A1 in the Gibbs Sampling section,
above). A1 usually contains !10% of the variables, and
these variables are usually located in different parts of
the network, making the problem of finding a legal con-
figuration easier. Even though one must find only a start-
ing configuration for A1, this starting configuration still
must be legal with regard to the remainder of the var-
iables, B1. This is trivial, however, owing to the fact that
the variables in A1 are spread out over the network.

Jensen (1996a) has presented a method that swiftly
finds the starting configuration in all cases tested so far.
There is too little space to describe it here, but it is based
on the exact sampling method of Dawid (1992) and
attempts to sample parts that are as large as possible,
until all variables have been fixed. It is sometimes nec-
essary to backtrack (as with gene dropping/forward sam-
pling and Gibbs sampling with relaxed probabilities),
but this occurs only in rare cases, and even then it is
necessary to backtrack only a few steps.

Linkage in the LQT Pedigree

In this section, we will apply the blocking Gibbs
method to the LQT pedigree shown in figure 1. We will
describe this particular linkage problem and explain how
linkage-analysis problems are represented and handled
by blocking Gibbs sampling. Finally, we will compare
various methods for estimating the recombination frac-
tion (v) and will present results that show the fast con-
vergence of blocking Gibbs sampling.

The LQT Pedigree

The LQT pedigree first identified by Brian Suarez is
affected by the LQT syndrome. Blood samples have been
collected from individuals 9, 13, and 17–59. Thus,
marker data are available only for these individuals. The
marker data shown in figure 1 have been simulated by
Suarez to mimic close linkage (v ∼0). The marker is
assumed to have four alleles with equal population fre-
quencies. The LQT syndrome is assumed to be deter-
mined by two alleles, one with population frequency .05
and the other with population frequency .95, with the
disease allele being the rarest. The LQT pedigree has
also been examined by Kong (1991).

Linkage Analysis with Blocking Gibbs Sampling

We represent the linkage problem in a way similar to
the pedigree representations shown in figures 4 and 7.
However, we now have two loci, as seen in figure 5.
There are still four gene variables for each individual

A–C, with an extra subscript—a (marker) or d (dis-
ease)—denoting the locus. In addition, for each individ-
ual, there are now four indicator variables: , ,A AZ ZC,a C,d

, and . The indicator variable takes on theB B AZ Z ZC,a C,d C,a

value 0 if individual C inherits from his or her father,fAa

A, and takes on the value 1 if individual C inherits mAa

from his or her father. Similarly, takes on the valueBZC,a

0 if individual C inherits from his or her mother, B,fBa

and takes on the value 1 if he or she inherits instead.mBa

The other two indicator variables related to the disease
gene are similarly defined. The joint distribution of

and isA AZ ZC,a C,d

A A(1 � v)/2 if (Z ,Z) = (0,0)C,a C,d
A A(1 � v)/2 if (Z ,Z) = (1,1)A A C,a C,dP (Z ,Z) = .v C,a C,d A Av/2 if (Z ,Z) = (0,1){ C,a C,d
A Av/2 if (Z ,Z) = (1,0)C,a C,d

(1)

The indicator variables and have a joint dis-B BZ ZC,a C,d

tribution, as given in equation (1). Whenever two as-
sociated indicator variables have different values, a re-
combination has occurred.

The joint distribution of the variables, , , ,f m fA A Aa a d

, , , , and (the set of variablesm f(A) f(A) m(A) m(A)A Z Z Z Z � Wd A,a A,d A,a A,d

in the extended pedigree) for all individuals (theA � V
set of individuals) can be written as follows (where

is the set of individuals with no parents and′V O V
where f(A) and m(A) denote the parents of A):

f m f mP (W) = � P(A)P(A)P(A)P(A) #v a a d d′A�V

f(A) f(A) m(A) m(A)# � P (Z ,Z)P (Z ,Z)v A,a A,d v A,a A,d′A�V�V

f f m f(A)# � P(A Ff(A) ,f(A) ,Z)a a a A,a′A�V�V

m f m m(A)#P(A Fm(A) ,m(A) ,Z)a a a A,a

f f m f(A)# � P(A Ff(A) ,f(A) ,Z)d d d A,d′A�V�V

m f m m(A)#P(A Fm(A) ,m(A) ,Z) .d d d A,d

(2)

In the work of Kong (1991), the merits of the rep-
resentation of equation (2), exemplified in figure 5, have
been discussed. This representation results in more var-
iables, but the conditional-probability tables of equation
(2) are simpler and require less storage space. The rep-
resentation is easily represented by a Bayesian network
and can be handled immediately by blocking Gibbs sam-
pling. Each of the components in equation (2) specifies
a variable in a Bayesian network. The conditional dis-
tributions, furthermore, specify edges from parents (i.e.,

894 Am. J. Hum. Genet. 65:885–901, 1999

Figure 9 Sample configuration of individuals 18 and 20. Indi-
vidual 18 has the disease genotype (1,2), meaning that he or she is
unaffected but carries the disease allele (1). Also, individual 18 has
the marker genotype (1,2). Individual 20 is unaffected as well, having
the disease genotype (2,1) and the marker genotype (1,4).

the conditioning variables) to a child. The pedigree in
figure 5 thus shows an example of the Bayesian-network
representation of equation (2).

For loci with incomplete penetrance, such as the dis-
ease locus shown in figure 1, terms for the penetrance
probabilities must be multiplied by equation (2). For
individual A with disease alleles and , the termf mA Ad d

would be for phenotype p and penetrancef mP (pFA ,A)p d d

probabilities P; thus, for all individuals, it would be
. The entire LQT pedigree is representedf mP P (pFA ,A)A�V p d d

by a Bayesian network, exemplified in figure 5. To per-
form linkage analysis with blocking Gibbs sampling, we
first pick a suitable value for (v0) such that all samples
are produced conditional on this v value. Then a starting
configuration is found, and blocking Gibbs sampling can
start. At each iteration, both the number of recombi-
nations (nr) and the number of nonrecombinations (nnr)
are counted. A recombination has occurred if a pair of
associated indicator variables (e.g., and) haveA AZ ZC,a C,d

different values, and nonrecombination is present if they
have the same value. In the following discussion, this
simple counting scheme will be referred to as “method
1.”

However, this scheme can be refined. In figure 5, we
examine the pair of indicator variables and . IfA AZ ZC,a C,d

is identical to , we do not know which of thesef mA Aa a

genes has been inherited by A. This means that we do
not know whether a recombination has occurred.
Counting this case as either a recombination or a non-
recombination corresponds to adding noise to the esti-
mate. Therefore, leaving it out leads to a better estimate.
In general, cases in which the parent is homozygous at
one of the loci should be left out. In the following dis-
cussion, this refined counting scheme will be referred to
as “method 2.” Currently, linkage-analysis implemen-
tations using an MCMC method always use either
method 1 or method 2. Another possibility (discussed
in Thomas and Cortessis 1992) is to use

.E(n ,n Fdata,v,A)r nr

However, method 2 can be refined even further. Con-
sider the LQT pedigree shown in figure 1. For individuals
with no offspring, it is relatively easy to directly estimate
the probabilities of recombination in each iteration.
With regard to individual 40, there are two v values to
consider—one relating to the inheritance from the father
and one relating to the inheritance from the mother. For
example, given that we know the values for the father’s
genes at both the disease locus () and the markerf m18 ,18d d

locus (), we know the possible outcomes for thef m18 ,18a a

alleles inherited from the father of individual 40 (i.e.,
and). We can easily calculate the probability off f40 40a d

each of the outcomes, as well as the probabilities of
recombination and nonrecombination for each outcome.
The probabilities of recombination for the outcomes are
summed, and the probabilities of nonrecombination are

summed. After a normalization, we have calculated the
probability that a recombination has occurred in indi-
vidual 40’s inheritance from individual 18. This com-
putation can be performed for all individuals without
offspring. For individuals with offspring, the v values
are not independent, and the calculation cannot be per-
formed easily. However, in figure 1, 42% of the indi-
viduals have no offspring, thereby making the benefit of
this refined scheme great. In the following discussion,
this counting scheme will be referred to as “method 3.”

It is clear that each of the three methods defined above
leads to an unbiased estimate of the full posterior dis-
tribution but that methods 2 and 3 will have a smaller
Monte Carlo error, which is documented by the follow-
ing results:

Example of method 3: In figure 9, an example con-
figuration of individuals 18 and 20 is shown. In table
1, the computation leading us to the probabilities of
recombination is shown.

First, given the configuration of the parents, the pos-
sible configurations for the offspring (individual 40) are
found. We know that individual 40 has the genotype
(2,4) at the marker locus, and, since we know that allele
2 (at the marker locus, a) must originate from the father
(individual 18), that allele 4 (also at the marker locus)
must originate from the mother (individual 20), and that
individual 40 does not have the LQT disease, we have
the three possible configurations shown in the second
row of table 1; in the second column of the second row
of this table, the format of the configurations is shown.

For each of these configurations, we check whether
we have a recombination for the inheritance from the
father and/or for the inheritance from the mother. With
configuration 1, we have a recombination for inheritance

Jensen and Kong: Blocking Gibbs Sampling for Linkage Analysis 895

Table 1

Status and Probabilities of Recombination Shown in Figure 9

DESIGNATION

CONFIGURATION STATUS

PROBABILITY
f40d

f40a
m40d

m40a

From Father
(Individual 18)

From Mother
(Individual 20)

1 1 2 2 4 Recombinant Recombinant v 20()2

2 2 2 1 4 Nonrecombinant Nonrecombinant 1�v 20()2

3 2 2 2 4 Nonrecombinant Recombinant 1�v v0 0() �2 2

Table 2

Comparison of Three Counting Methods and the
Exact Method, for Log-Likelihood Difference
log[L.2)/L(.3)], with LQT Pedigree

No. of Iterations
and Method

Average (SDs) for Log-Likelihood
Difference log[L(.2)/L(.3)]a

100:
1 1.9 (.22, .3)
2 1.93 (.032, .07)
3 1.90 (.028, .04)

1,000:
1 1.88 (.023, .05)
2 1.87 (.013, .03)
3 1.91 (.0037, .02)

Exact method 1.85 (),))

NOTE.—A total of 20 runs were performed for each
method—10 with 100 iterations and 10 with 1,000
iterations.

a The average is that over the 10 log-likelihood dif-
ferences; the first value in parentheses is the SD of the
Markov chain, found by use of the autocorrelations
method of Geyer (1991), and the second value in pa-
rentheses is the SD over the 10 results.

from the father, since allele 1 (locus d) originates from
the grandfather whereas allele 2 (locus a) originates from
the grandmother. With configuration 1, we have a non-
recombination for inheritance from the mother, since
both allele 2 (locus d) and allele 4 (locus a) originate
from the grandfather.

Then, we compute the probability that each of these
configurations will occur. For the first configuration, this
probability is found simply by multiplication of the
probability of one recombination and one nonrecom-
bination. The probabilities of the other configurations
are computed similarly.

Finally, the probability of recombination for inheri-
tance from the father (individual 18) is calculated by
first summing together the probability contributions
from the configurations in which we have seen a recom-
bination when inheritance is from the father and then
dividing this number by the sum of the probability
contributions.

In table 2, the three methods have been compared, for
the LQT pedigree. For each method, 10 runs have been
performed (at both 100 iterations and 1,000 iterations).
The same seed for random numbers was used for the
ith run of each method to make sure that the results are
not coincidental. The complexities of the three methods
are almost identical, since the more-complex computa-
tions performed in method 3 take negligible extra time
compared with the remaining computations used in the
blocking Gibbs sampler during each iteration. The av-
erage and SD of log10[/L(v0)], where L(v) is the like-̂L(v)1

lihood of v, are shown in table 2; in this case, we use
and . In the following discussion, this valuev = .2 v = .30 1

will be referred to as the “log-likelihood difference,”
since, in effect, it is the difference between the log-like-
lihoods for two values for v. The LOD score corresponds
to these log-likelihood differences in the following way:
log10[/L(v2)], where is the v value that has the max-̂ ˆL(v̂) v1

imum likelihood. The relationship between the log-like-
lihood difference shown in table 2 and the LOD score
will be further elaborated later in this section. For now,
it suffices to state that the log-likelihood differences
shown in table 2 are used in the computation of the

LOD score and that, as they become more precise, the
LOD score becomes more precise.

The SD shown in the second column of table 2, SD(1),
is computed by the autocorrelations method described
by Geyer (1991). This SD expresses the variation within
the dependent Markov-chain samples. Since the runs for
the three methods are based on the same seed for random
numbers, it is clearly seen that the SD of the estimate
can be lowered significantly by use of the more advanced
methods. Use of method 2 instead of method 1 basically
corresponds to the removal of noise from the method 1
estimate and, thus, to obtaining a smaller SD. Further
noise is removed when method 3 is applied. Since
method 3 is clearly the optimal of the three methods, it
has been used in all subsequent runs.

In the Appendix, we describe how to estimate LOD
scores in a pedigree such as this, but here we will focus
on the blocks created by the blocking Gibbs sampler.

Description of the Created Blocks
The Bayesian network corresponding to the linkage

analysis shown in figure 1 contains 915 variables. The

896 Am. J. Hum. Genet. 65:885–901, 1999

Table 3

Results of Simple1 Method, for Different Iterations and for the Exact Method

NO. OF ITERATIONS

AVERAGE (SD) FOR LOG-LIKELIHOOD DIFFERENCEa

log[L(.0)/L(.01)]:
,v = .0 v = .010 1

log[L(.01)/L(.1)]:
,v = .01 v = .10 1

log[L(.1)/L(.2)]:
,v = .1 v = .20 1

log[L(.2)/L(.3)]:
,v = .02 v = .30 1

0
,v = .3 v = .40 1

log[L(.4)/L(.5)]:
,v = .4 v = .50 1

10 .18 (.01) 1.6 (.2) 1.92 (.07) 1.8 (.2) 1.5 (.3) .9 (.5)
100 .184 (.004) 1.72 (.04) 1.97 (.03) 1.90 (.04) 1.66 (.07) 1.0 (.2)
1,000 .186 (.001) 1.73 (.02) 1.966 (.008) 1.91 (.02) 1.63 (.07) 1.05 (.04)
10,000 .1856 (.0003) 1.73 (.01) 1.966 (.006) 1.912 (.008) 1.64 (.01) 1.02 (.02)
Exact method .1859 1.70 1.912 1.851 1.592 1.02

a Data are those for 10 log-likelihood differences. v0 is the v value used during each run.

reason for this is that several variables are created for
each individual in the pedigree—for example, for indi-
vidual 56, , , , , , , , ,f f m m G G P 5456 56 56 56 56 56 56 Zd a d a a d d 56,a

, , , , and . These variables have all54 55 55 54 55Z Z Z Z Z56,d 56,a 56,d 56 56

been introduced in preceding sections.
A few more variables are created in order to take

account of heterozygous individuals. The indicator var-
iables discussed above are not created for the 12 nodes
without parents.

All in all, there are a total of 915 variables in the
Bayesian network, spread over 10 generations.

Obviously, there is plenty of redundant information
in the variables discussed above, and, if some extra
bookkeeping is performed in a practical implementation,
it would be possible to leave out some of them. However,
in this application, it was decided not to do this, since
it was not necessary. With regard to the storage requi-
rements of the junction trees, it makes little difference,
since the same loops will be present even if the variables
are reduced to the bare minimum. The enormous storage
requirements of the junction trees are caused by the pres-
ence of hundreds of loops, and reductions in the vari-
ables associated with each individual will reduce the to-
tal storage requirements by only a small linear factor.

What is more important is the presence of several
logically related variables in the set of variables for each
individual. This usually severely decreases the mixing
properties of single-site Gibbs samplers; however, for a
blocking Gibbs sampler that updates almost all variables
jointly, this should not pose a significant problem. It
remains to be investigated whether reduction of the set
of logical dependences would significantly improve the
mixing properties of the blocking Gibbs sampler.

The junction-tree representation necessary for this
Bayesian network that is necessary for belief updating
requires 1.5 gigabytes, which is beyond the processing
capacity of most contemporary computers. When 10
blocks are created in a random run with blocking Gibbs
sampling, the average size of these junction trees will be
1.7 megabytes. The total memory requirement of these
10 blocks therefore will be 17 megabytes, which is ∼100
times less than that of the initial junction tree.

As a rule of thumb, the number of blocks in a given
blocking Gibbs sampling scheme should usually be 2–10,
and often the optimal number of blocks is ∼5. The op-
timal number of blocks in this respect is the number of
blocks that yields both the lowest total storage require-
ment for the blocks and the fastest updating scheme.
Usually, when the number of blocks is 14–5, the size of
the blocks does not decrease very much, so the time
required by each iteration is increased. Still, almost all
variables are sampled in each block; thus, on the average,
each variable is sampled N times each iteration if there
are X blocks. In the work of Jensen et al. (1995), several
rules of thumb have been provided regarding how to
balance the number of blocks, with respect to the lowest
total storage requirements, the speed of the updating
scheme, and the mixing properties of the resulting Mar-
kov chain.

It is very difficult to provide a visual image of what
these 10 blocks look like, but a few statistics can be
provided. On average, the blocks consist of ∼96% of
the 915 variables in the network:

1. 880 variables
2. 880 variables
3. 882 variables
4. 882 variables
5. 878 variables
6. 871 variables
7. 871 variables
8. 874 variables
9. 874 variables

10. 872 variables

In general, a block tends to comprise variables of dis-
tantly related subjects and, usually, only one or a few
of the variables associated with each individual. Usually,
the variables for an individual are involved in the same
loops, so inclusion of just one of them in the block is
sufficient to break these loops. So, for some number of
individuals, one or a few of the associated variables are
chosen to break the loops; however, it is not the case
that the same types of variables are chosen for each

Jensen and Kong: Blocking Gibbs Sampling for Linkage Analysis 897

Figure 10 Log likelihood of v (log L(theta)) plotted against v.
For 10, 100, and 1,000 iterations, the maximum-likelihood estimate
for v clearly is .0, and it can be seen that the graphs converge toward
the exact curve.

Table 4

Comparison of Four Counting Methods and the Exact
Method, for Log-Likelihood Difference log[L(.3)/L(.4)]

No. of Interactions
and Method

Average (SD) for Log-Likelihood
Difference log[L(.3)/L(.4)]a

100:
Simple1 1.66 (.07)
Simple2 1.50 (.05)
Square root 1.58 (.04)
Iterative 1.59 (.04)

1,000:
Simple1 1.63 (.07)
Simple2 1.53 (.02)
Square root 1.59 (.01)
Iterative 1.60 (.01)

10,000:
Simple1 1.64 (.01)
Simple2 1.534 (.005)
Square root 1.591 (.005)
Iterative 1.599 (.005)

Exact method 1.592 ())

a Data for the methods are as follows: simple1, results at
; simple2, results at ; square root, results atv = .3 v = .40 0

and , for the square-root method; iterative,v = .3 v = .40 0

combined results at and , for the iterativev = .3 v = .40 0

method.

individual. The type of the variable is of no consequence
to the algorithm that selects the variables—all that mat-
ters is the reduction in storage requirements. This further
substantiates the basic claim of the blocking Gibbs sam-
pler—that is, that, by removing !10% of the variables,
it can reduce to a manageable size the memory requi-
rements of belief updating. In this case, the memory re-
quirements of the junction tree have been reduced to
0.1% by removing only 4% of the variables.

Obviously, there must be a high degree of overlap
among the blocks, since they all contain almost all the
variables. There is also significant overlap between the
variables that are not present in the blocks. Obviously,
these are among the best variables to remove in order
to reduce memory requirements, and it is optimal to
remove, from as many blocks as possible, the very best
of these best variables.

In the implemented version of blocking Gibbs sam-
pling, the number of blocks from which a variable is
allowed to be removed can be controlled. In this ex-
ample, each variable was allowed to be removed from
all blocks except one, to ensure that it would be sampled
at least once every iteration. This results, on average, in
150% overlap between the variables removed from two
blocks.

Results of Linkage Analysis

In this section, blocking Gibbs sampling is applied to
the LQT pedigree; the results are presented in table 3.
To better understand some of these results, it may be
necessary to review the Appendix. Each element in table
3 represents the log-likelihood differences for a number
of pairs of v values—for example, log10[/L(.1)]. ÂL(.2)
good estimate for the LOD score—that is, log10[/̂L(v̂)1

L(.5)] (with , since the LQT-pedigree data arev̂ = .0

simulated to be in close linkage)—can be found by add-
ing together the differences. Each of the differences
shown in table 3—log[/L(.01)], log[/L(.1)],̂ ̂L(.0) L(.01)
log[/L(.2)], log[/L(.3)], log[/L(.4)], and̂ ̂ ̂L(.1) L(.2) L(.3)
log[/L(.5)]—corresponds to a piece of the grapĥL(.4)
shown in figure 10. The maximum-likelihood estimate
of v can be found in figure 10 by finding the highest
point on the graph, and the LOD score can be read as
the log-likelihood difference of this point. Furthermore,
the exact results have been plotted in figure 10 and can
be compared with the estimates. Clearly, the estimates
converge toward the exact results. At each log-likelihood
difference, 10 runs have been made, and the values
shown in the table are the means and SDs of these runs.
(On a SPARCstation-20, a 1,000-iteration run took ∼9
h.)

It would be interesting to investigate whether multi-
plying together six independent log-ratio estimates is
more efficient than a direct estimate based on a single
series of six times the length.

On the basis of the data shown in table 3, it can be
seen that the most likely v value is indeed 0. This can
be seen when we examine the cumulative sum of log-
likelihood differences across the columns, plot them
against v, and find the maximum at 0. Adding the log-
likelihood differences together, we find the LOD score
to be ∼8, thus providing strong evidence of tight linkage.

Furthermore, it can be seen that the accuracy of the
estimates improves significantly when more iterations
are performed. After 10,000 iterations, the SD is ∼1%

898 Am. J. Hum. Genet. 65:885–901, 1999

Table 5

Comparison of Results with Different Estimation Methods, at 10,000 Iterations

METHOD

AVERAGE (SDa) FOR THE LOG-LIKELIHOOD DIFFERENCE

log[L(.01)/L(.1)]:
,v = .01 v = .11 0

log[L(.1)/L(.2)]:
,v = .1 v = .21 0

log[L(.2)/L(.3)]:
,v = .2 v = .31 0

log[L(.3)/L(.4)]:
,v = .3 v = .41 0

log[L(.4)/L(.5)]:
,v = .4 v = .51 0

Simple1 1.73 (.01) 1.966 (.006) 1.912 (.008) 1.64 (.01) 1.02 (.02)
Simple2 1.664 (.001) 1.856 (.002) 1.783 (.002) 1.524 (.005) .968 (.007)
Simple3 1.694 (.002) 1.910 (.003) 1.849 (.004) 1.591 (.006) 1.02 (.01)
Square root 1.700 (.001) 1.912 (.002) 1.850 (.003) 1.591 (.005) 1.019 (.005)
Iterative 1.7035 (.0009) 1.914 (.002) 1.854 (.003) 1.599 (.005) 1.031 (.006)
Exact 1.6990 1.912 1.851 1.592 1.024

a Average over 10 runs.

of the estimate for almost all of them, showing that very
high precision can be obtained.

However, on the basis of the data shown in table 3,
it can be seen that the estimates do not seem to converge
toward the exact results; between 1,000 and 10,000 it-
erations, the estimates have not moved farther toward
the exact results, indicating that the former do not con-
verge toward the latter. The reason for this is that, as
has been explained above, the estimator used in table
3—which is called “simple1” in table 4—is not optimal.
Thus, even if an infinite number of iterations are per-
formed, we will not be able to obtain better results by
means of the method given in table 3. However, better
results can be obtained in several ways, as can be seen
in table 5. Here, we compare the results for the simple1

and simple2 methods with those for the “square-root”
and “iterative” estimation methods and with those for
a new method, denoted “simple3.” The simple3 method
uses the runs that also have been used in table 3, but in
a more clever way. For example, instead of estimating
log[/L(.1)] only by using the results at , wêL(.2) v = .10

can use the results at , to compute log[/̂

v = .1 L(.1)0

L(.15)], and the results at , to computev = .20

log[/L(.2)], and then̂L(.15)

̂ ̂ ̂L(.2) L(.1) L(.15)
log = log � log .

L(.1) L(.15) L(.2)

Using this method allows us to get better estimates than
can be made with either simple1 or simple2, as is seen
clearly in table 5. In fact, the results obtained with sim-
ple3 are almost as good as those obtained with the
square-root method. As expected, the square-root
method is still the optimal method and is significantly
better than the iterative method.

Discussion

We have described a general method for inference in
very large, complex Bayesian networks and have applied

it successfully to a particularly hard problem in genet-
ics—namely, linkage analysis. The results shown in table
3 document that the algorithm converges toward a dis-
tribution that is close to the correct distribution and that
it mixes fast. Single-site Gibbs sampling would have been
totally useless if applied to a problem of this size. The
size and complexity of the LQT pedigree is just within
the limits of exact methods, so we have been able to
check the accuracy of the results.

The blocking Gibbs method has been shown to be
successful in this very difficult case, and it can easily be
applied to larger problems. Because of the way in which
the blocks are selected, the method scales well, and we
expect multipoint linkage analysis to pose no further
theoretical problems. It will merely make the storage
requirements greater.

The major problem still remaining with the method
is that we cannot yet prove that it is irreducible in the
general case. This requires the construction of a general
method for finding the noncommunicating classes of the
Gibbs sampler, such as has been discussed by Lin et al.
(1994).

At this point, however, it is uncertain whether such a
general method can be found. Furthermore, the problem
of detecting these classes may be NP-hard. If these classes
were identified, it would be possible to design blocks
tailored to allow the blocking Gibbs sampler to jump
between the classes, thus guaranteeing irreducibility of
the sampler.

In practice, it is often possible to design these blocks
by hand, and the built-in robustness of the blocking
Gibbs sampler—which lets it usually sample 190% of
variables jointly—will render it irreducible in most cases.
Of course, this still cannot be guaranteed in the general
case. In the LQT pedigree, we experience only reduci-
bility problems that are due to such gene representation
as has been described in the Criterion 3 subsection,
above. These problems can be handled automatically by
the blocking Gibbs software.

Jensen and Kong: Blocking Gibbs Sampling for Linkage Analysis 899

Acknowledgments

C.S.J. would like to thank the other members of the decision-
support-systems group at Aalborg University, for providing a
stimulating environment, and one of the anonymous referees,
for tiresome work on improvement of this article. This research
was supported by the Danish Research Councils, through the
Program for Informatik i Forskning og Teknologi.

Appendix

Estimation of LOD Scores

The v is estimated by use of the number of recom-
binations nr, the number of nonrecombinations nnr, and
the calculated v for bottom-level individuals r1,),rk, by
the means of equation (A1). If M iterations have been
performed with the blocking Gibbs sampler at a fixed
recombination fraction v0, then the likelihood ratio can
be estimated by the following expression:

̂ (k) (k)M n nr nrL(v) 1 v 1 � v1 1 1= (A1)� () ()L(v) M v 1 � vk=10 0 0

(k)nr
v 1 � v1 1#� r � (1 � r) ,i i{ []}i=1 v 1 � v0 0

where is the number of calculated probabilities of(k)nr

recombination in bottom-level individuals at iteration k.
In general, let y be the simulated data and let Ri be

the 0-or-1 variable denoting whether there is a recom-
bination with meiosis i. Then, in general, the contri-
bution of a meiosis is the term in the curly braces in
equation (A1), where

r = E(R = 1Fy,v) = P(R = 1Fy,v) .i i 0 i 0

When the data determine Ri, so that ri is either 0 or 1,
then the term in the curly braces reduces to either

or . When the data are not infor-v /v (1 � v)/(1 � v)1 0 1 0

mative at all, then , and the term inr = P(R = 1Fv) = vi i 0 0

the curly braces reduces to 1 and can be ignored.
The LOD score can be found by maximizing the ratio

ofequation (A1) over v1 and applying log10.
By means of methods presented in the work of Meng

and Wong (1996), it is now possible to combine the
results from two runs that have different v values. We
present the first results of use of these methods in a
practical application. The theory underlying the methods
is described very well in the work of Meng and Wong
(1996) and will not be discussed in detail here. We will
present only the formulas that have been used in the
present article, and the notation has been changed to

better suit this application. Assume that we have run
100 iterations at and 100 iterations at .v = .1 v = .30 1

Now, if we want to compute log[/L(.1)], instead of̂L(.3)
usingequation (A1) and only the run at .1, we can use
both runs. As more information is included in the com-
putation, it is to be expected that by using this method
we will get better results. In the work of Meng and Wong
(1996), various methods for performing this estimation
are discussed. We will compare two of these methods
versusequation (A1).

Equation (A1) can be expressed as follows:

̂L(v) q (w Fv)1 1 0 1= E , (A2)0 []L(v) q (w Fv)0 0 0 0

where wi is the number of observations, given vi; where
implies that we average over all observations, givenE0

; and where qi[w0Fvi] is a function that estimatesv = v0

some quantity from samples w0 generated with
—but at the value of , which may or may notv = v v = v0 i

be equal to v0.
In our case,

(k) (k)k k n nr nrq (w Fv) v 1 � v1 0 1 1 1= () ()kq (w Fv) v 1 � v0 0 0 0 0

(k)nr
v 1 � v1 1#� r � (1 � r) ,i i{ []}i=1 v 1 � v0 0

where the samples , and ri have been generated(k) (k)n nr nr

with , and thus .k (k) (k)v = v w = {n ,n ,r }0 0 r nr i

Equation (A1) is actually a generalization of an equa-
tion that states

̂ []E q (w Fv)a(w)L(v) 0 1 0 1 01
= , (A3)

[]L(v) E q (w Fv)a(w)0 1 0 1 0 1

where a(w) is an arbitrary function. Different choices
of a(w) are discussed in the work of Meng and Wong
(1996). If , then equation (A1) reducesa(w) = 1/[q (wFv)]0 0

toequation (A2).
As mentioned, we will look at two choices for a(w):
1. . With this value of a, equation (A3)�a = 1/ q q0 1

looks likeequation (A4). In the following discussion, this
method (which, in the work of Meng and Wong [1996],
is called the “geometric-mean method”) will be referred
to as the “square-root method”:

q (w Fv)1 0 1̂ �()E0 q (w Fv)L(v) 0 0 01
= . (A4)

q (w Fv)0 1 0L(v) �0 ()E1 q (w Fv)1 1 1

900 Am. J. Hum. Genet. 65:885–901, 1999

2. , where c is a constant and where,a = c/s q � s rq1 1 0 0

if n0 is the number of observations with v0, n1 is the
number of observations with v1, and , thenn = n � n0 1

and . a furthermore depends on thes = n /n s = n /n0 0 1 1

ratio r, which is computed in an iterative fashion and is
defined in the following discussion. Inequation (A5), the
iterative estimator is shown:

q (w Fv)1 0 1̂ E []0 s q (w Fv)�s rq (w Fv)L(v) 1 1 0 1 0 0 0 01
= . (A5)

q (w Fv)0 1 0L(v) E []0 1 s q (w Fv)�s rq (w Fv)1 1 1 1 0 0 1 0

Starting with an initial guess of the value of r, , we(0)r̂
calculate the estimate of r iteratively, by using the pre-
vious estimate of r. Specifically, at the st iteration,(t � 1)
we compute

n0
1 q (w Fv)1 0i 1

(t)� []ˆn s q (w Fv)�s r q (w Fv)0 1 1 0i 1 0 0 0i 0
i=1(t�1)r̂ = n1

1 q (w Fv)0 1i 0
(t)� []ˆn s q (w Fv)�s r q (w Fv)1 1 1 1i 1 0 0 1i 0

i=1

n0
1 l0i

(t)� []ˆn s l �s r0 1 0i 0
i=1= ,n1

1 1
(t)� []ˆn s l �s r1 1 1i 0

i=1

where andl = [q (w Fv)/q (w Fv)] l =0i 1 0i 1 0 0i 0 1i

. These values need only be calcu-[q (w Fv)/q (w Fv)]1 1i 1 0 1i 0

lated once, at the beginning of the algorithm.
There is one problem with this method. When the

samples are independent, we know the effective sample
sizes, n0 and n1; however, with dependent samples, such
as those of the blocking Gibbs sampler, n0 and n1 are
no longer the true sample sizes, since the dependence
between successive samples typically reduces the “effec-
tive” sample sizes, and thus the use of n0 and n1 may
lead to simulation errors.

The square-root method is a new method, which first
was presented in the work of Meng and Wong (1996),
but the iterative method is not new. It has been discussed,
in the area of physics, in the work of Bennet (1976).
The square-root method is an interesting addition, since
it is sometimes desirable to have simple, noniterative
procedures that have good—albeit not necessarily op-
timal—properties. Such a noniterative estimator can be
used, for example, as a starting value for the iterative
method. As can be seen in table 4, a noniterative esti-
mator can be better than the iterative estimator, when
the samples are not independent. The potential for the
simple identity ofequation (A3) has been further inves-
tigated in the work of Gelman and Meng (1994, 1996)
and Meng and Schilling (1996).

In table 4, results from runs with the three previously
described methods are shown. A total of 10 new runs

have been performed for each of the methods and for
100 and 1,000 iterations. It is seen that the log-likeli-
hood differences found by combining the results from
two runs with different v0 values are consistently better
than those obtained by using the results of only a single
run.

It is also interesting to note that the noniterative
square-root method seems to give results that are sig-
nificantly closer to the exact value than are those given
by the iterative method. This is probably due to the fact
that (a) the optimality of the iterative method was de-
rived under the independence assumption but (b) the
samples of the blocking Gibbs sampler are dependent.
In such cases, it has been speculated (in Meng and Wong
1996) that the square-root method can be better. This
is a useful result, showing that the simple, noniterative
estimator can be better than the more complex, iterative
method, in cases in which samples are dependent. Fur-
thermore, with the blocking Gibbs sampler, the samples
are much less dependent than they are with the single-
site Gibbs sampler, indicating that, in this case, the
square-root method may be significantly better than the
iterative method.

References

Andersen SK, Olesen KG, Jensen FV, Jensen F (1989) HU-
GIN—a shell for building Bayesian belief universes for
expert systems. In: Sridharan NS (ed) Proceedings of the
Eleventh International Joint Conference on Artificial Intel-
ligence. Morgan Kaufmann, San Mateo, CA, pp 1080–1085

Bennett CH (1976) Efficient estimation of free energy differ-
ences from Monte Carlo data. J Comput Physics 22:
245–268

Cannings C, Thompson EA, Skolnick MH (1976) The recur-
sive derivation of likelihoods on complex pedigrees. Adv
Appl Prob 8:622–625

——— (1978) Probability functions on complex pedigrees.
Adv Appl Prob 10:26–61

Cottingham RW Jr, Idury RM, Schäffer AA (1993) Faster se-
quential genetic linkage computations. Am J Hum Genet 53:
252–263

Dawid AP (1992) Applications of a general propagation al-
gorithm for probabilistic expert systems. Stat Comput 2:
25–36

Elston RC, Stewart J (1971) A general model for the genetic
analysis of pedigree data. Hum Hered 21:523–542

Gelfand AE, Smith AFM (1990) Sampling-based approaches
to calculating marginal densities. J Am Stat Assoc 85(410):
398–409

Gelman A, Meng XL (1994) Path sampling for computing
normalizing constants: identities and theory. Tech rep 376.
Department of Statistics, University of Chicago, Chicago

——— (1998) Simulating normalizing constants: from im-
portance sampling to bridge sampling to path sampling. Stat
Sci 13(2): 163-185

Gelman A, Rubin DB (1992) Inference from iterative simu-

Jensen and Kong: Blocking Gibbs Sampling for Linkage Analysis 901

lation using single and multiple sequences. Stat Sci 7:
457–511

Geman S, Geman D (1984) Stochastic relaxation, Gibbs dis-
tributions and the Bayesian restoration of images. IEEE
Trans Pattern Anal Machine Intell 6:721–741

Geyer CJ (1991) Markov chain Monte Carlo Maximum like-
lihood. In: Keramidas E (ed) Computing science and statis-
tics: proceedings of the 23d Symposium on the Interface.
Inteface Foundation of North America, Fairfax Station, VA,
pp 156–163

——— (1992) Practical Markov Chain Monte Carlo. Stat Sci
7(4): 473–511

Geyer CJ, Thompson EA (1993) Annealing Markov chain
Monte Carlo with applications to pedigree analysis. Res rep
589, School of Statistics, University of Minnesota,
Minneapolis

Irwin M, Cox N, Kong A (1994) Sequential imputation for
multilocus linkage analysis. Proc Natl Acad Sci USA 91:
11684–11688.

Jensen CS (1996a) A simple method for finding a legal con-
figuration in complex Bayesian networks. Tech rep R-96-
2046, Department of Computer Science, Aalborg University,
Aalborg, Denmark

——— (1997) Blocking Gibbs sampling for interference in
large and complex Bayesian networks with applications in
genetics. PhD thesis, Department of Computer Science, Aal-
borg University, Aalborg, Denmark

Jensen CS, Kong A, Kjærulff U (1995) Blocking-Gibbs sam-
pling in very large probabilistic expert systems. Int J Hum
Comput Stud 42:647–666

Jensen CS, Sheehan N (1998) Problems with determination of
noncommunicating classes for Monte Carlo Markov chain
applications in pedigree analysis. Biometrics 54:416–425

Jensen FV (1996b) An introduction to Bayesian networks.
UCL Press/Springer-Verlag, New York

Jensen FV, Lauritzen SL, Olesen KG (1990) Bayesian updating
in causal probabilistic networks by local computations.
Comput Stat Q 4:269–282

Kjærulff U (1993) Approximation of Bayesian networks
through edge removals. Res rep IR-93-2007, Department of
Computer Science, Aalborg University, Aalborg, Denmark

Kong A (1991) Efficient methods for computing linkage like-
lihoods of recessive diseases in inbred pedigrees. Genet Ep-
idemiol 8:81–103

Kong A, Cox N, Frigge M, Irwin M (1993) Sequential im-
putation and multipoint linkage analysis. Genet Epidemiol
10:483–488

Lange K, Elston RC (1975) Extensions to pedigree analysis. I.
Likelihood calculations for simple and complex pedigrees.
Hum Hered 25:95–105

Lathrop GM, Lalouel JM (1984) Easy calculations of lod

scores and genetic risks on small computers. Am J Hum
Genet 36:460–465

Lathrop GM, Lalouel JM, Julier C, Ott J (1985) Multilocus
linkage analysis in humans: detection of linkage and esti-
mation of recombination. Am J Hum Genet 37:482–498

Lauritzen SL (1992) Propagation of probabilities, means and
variances in mixed graphical association models. J Am Stat
Assoc 87:1098–1108

Lauritzen SL, Spiegelhalter DJ (1988) Local computations with
probabilities on graphical structures and their application
to expert systems. J R Stat Soc [B] 50(2): 157–224

Lin S, Thompson E, Wijsman E (1994) Finding noncommun-
icating sets for Markov chain Monte Carlo estimations on
pedigrees. Am J Hum Genet 54:695–704

Meng XL, Schilling S (1996) Fitting full-information item fac-
tor models and an empirical investigation of bridge sam-
pling. J Am Stat Assoc 91:1254–1267

Meng XL, Wong WH (1996) Simulating ratios of normalizing
constants via simple identity: A theoretical exploration. Stat
Sin 6:831–860

Pearl J (1986) Fusion, propagation and structuring in belief
networks. Artificial Intell 29:241–288

——— (1991) Probabilistic reasoning in intelligent systems:
networks of plausible inference series in representation and
reasoning, 2d ed. Morgan Kaufmann, San Mateo, CA

Schäffer AA, Gupta SK, Shriram K, Cottingham RW Jr (1994)
Avoiding recomputation in linkage analysis. Hum Hered 44:
225–237

Shachter RD, Andersen SK, Szolovits P (1994) Global con-
ditioning for probabilistic inference in belief networks. In:
Lopez de Mantaras R, Poole D (eds) Proceedings of the
Tenth Conference on Uncertainty in Artificial Intelligence.
Morgan Kaufmann, San Mateo, CA, pp 514–522

Sheehan N, Thomas A (1993) On the irreducibility of a Mar-
kov chain defined on a space of genotype configurations by
a sampling scheme. Biometrics 49:163–175

Shenoy PP, Shafer GR (1990) Axioms for probability and be-
lief-function propagation. In: Shachter RD, Levitt TS, Kanal
LN, Lemmer JF (eds) Uncertainty in artificial intelligence.
Vol 4. Elsevier Science (North-Holland), Amsterdam, pp
169–198

Smith AFM, Roberts GO (1993) Bayesian computation via the
Gibbs sampler and related Markov chain Monte Carlo
methods. J R Stat Soc [B] 55(1): 5–23

Thomas A, Spiegelhalter DJ, Gilks WR (1992) BUGS: A pro-
gram to perform Bayesian inference using Gibbs sampling.
In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds)
Bayesian statistics. Vol 4. Clarendon Press, Oxford, pp
837–842

Thomas DC, Cortessis V (1992) A Gibbs sampling approach
to linkage analysis. Hum Hered 42:63–76

	Blocking Gibbs Sampling for Linkage Analysis in Large Pedigrees with Many Loops
	Introduction
	Blocking Gibbs Sampling
	Exact Belief Updating
	Gibbs Sampling
	The Blocking Gibbs Sampling Scheme

	Linkage in the LQT Pedigree a a d
	The LQT Pedigree
	Linkage Analysis with Blocking Gibbs Sampling
	Description of the Created Blocks
	Results of Linkage Analysis

	Discussion
	References

